On Tree Decomposability of Henneberg Graphs

نویسندگان

  • Marta R. Hidalgo
  • Robert Joan-Arinyo
چکیده

In this work we describe an algorithm that generates well constrained geometric constraint graphs which are solvable by the treedecomposition constructive technique. The algorithm is based on Henneberg constructions and would be of help in transforming underconstrained problems into well constrained problems as well as in exploring alternative constructions over a given set of geometric elements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complement of Special Chordal Graphs and Vertex Decomposability

In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.

متن کامل

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

Pebble Game Algorithms and (k, l)-Sparse Graphs

A multi-graph G on n vertices is (k, l)-sparse if every subset of n ≤ n vertices spans at most kn − l edges, 0 ≤ l < 2k. G is tight if, in addition, it has exactly kn − l edges. We characterize (k, l)-sparse graphs via a family of simple, elegant and efficient algorithms called the (k, l)-pebble games. As applications, we use the pebble games for computing components (maximal tight subgraphs) i...

متن کامل

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

An Extension of a Theorem of Henneberg and Laman

We give a constructive characterization of graphs which are the union of k spanning trees after adding any new edge. This is a generalization of a theorem of Henneberg and Laman who gave the characterization for k = 2. We also give a constructive characterization of graphs which have k edgedisjoint spanning trees after deleting any edge of them.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014